Your browser doesn't support javascript.
loading
Fully Bio-based Poly(ketal-ester)s by Ring-opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid.
Zhou, Tong; Meng, Xian-Bin; Du, Fu-Sheng; Li, Zi-Chen.
Afiliação
  • Zhou T; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beiji
  • Meng XB; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beiji
  • Du FS; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beiji
  • Li ZC; Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beiji
Chem Asian J ; 18(7): e202201238, 2023 Apr 03.
Article em En | MEDLINE | ID: mdl-36756897
ABSTRACT
A fully renewable bio-based bicyclic lactone containing a five-membered cyclic ketal moiety, 7-methyl-3,8,10-trioxabicyclo[5.2.1]decan-4-one (TOD), was synthesized through a two-step acid-catalyzed process from glycerol and levulinic acid. The ring-opening polymerization (ROP) of TOD at 30°C with benzyl alcohol (BnOH) as the initiator and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst can afford high molar mass PTOD with a cis-2.4-disubstitued 2-methyl 1,3-dioxolane moiety in its repeating unit. PTOD is an amorphous polymer with a glass transition temperature (Tg ) of 13°C. It can be hydrolyzed into structurally defined small molecules under acidic or basic conditions by the selective cleavage of either the cyclic ketal or the ester linkage respectively. The TBD-catalyzed copolymerization of L-lactide (L-LA) and TOD at -20°C was investigated. It was confirmed that L-LA polymerized quickly with racemization to form PLA, followed by a slow incorporation of TOD into the formed PLA chains via transesterification. By varying the feed ratios of L-LA to TOD, a series of random copolymers (PLA-co-PTOD) with different TOD incorporation ratios and tunable Tg s were obtained. Under acidic conditions, PLA-co-PTOD degrades much faster than PLA via the selective cleavage of the cyclic ketal linkages. This work provides insights for the development of more sustainable and acid-accelerated degradable alternatives to aliphatic polyesters.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Asian J Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Asian J Ano de publicação: 2023 Tipo de documento: Article