Your browser doesn't support javascript.
loading
Levan nanoparticles with intrinsic CD44-targeting ability for tumor-targeted drug delivery.
Lee, Jin Sil; Park, Eunyoung; Oh, Hyeryeon; Choi, Won Il; Koo, Heebeom.
Afiliação
  • Lee JS; Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of
  • Park E; Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
  • Oh H; Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea; School of Materials Science and Engineering, Gwangju Institute of
  • Choi WI; Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea. Electronic address: choi830509@kicet.re.kr.
  • Koo H; Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. Electronic address: hbkoo@catholic.ac.kr.
Int J Biol Macromol ; 234: 123634, 2023 Apr 15.
Article em En | MEDLINE | ID: mdl-36773871
Existing anticancer therapeutics exhibit short half-lives, non-specificity, and severe side effects. To address this, active-targeting nanoparticles have been developed; however, the complex fabrication procedures, scale-up, and low reproducibility delay FDA approval, particularly for functionalized nanoparticles. We developed levan nanoparticles via simple one-pot nanoprecipitation for specific anticancer drug delivery. Levan is a plant polysaccharide which has a binding affinity to CD44 receptors and amphiphilicity. The nanoparticles are self-assembled and enable active-targeting without chemical modifications. The paclitaxel-loaded levan nanoparticles (PTX@LevNP) demonstrated a sustained PTX release and long-term stability. The LevNP can bind CD44 receptors on cancer cells, and PTX@LevNP showed enhanced anticancer activity in CD44-positive cells (SCC7 cells). In SCC7 tumor-bearing mice, the accumulation of LevNP in tumor tissue was 3.7 times higher than that of the free-dye, resulting in improved anticancer efficacy of PTX@LevNP. This new strategy using levan can produce nanoparticles for effective cancer treatment without complex fabrication procedures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Limite: Animals Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Limite: Animals Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article