Your browser doesn't support javascript.
loading
SPLIT-PIN software enabling confocal and super-resolution imaging with a virtually closed pinhole.
Di Franco, Elisabetta; Costantino, Angelita; Cerutti, Elena; D'Amico, Morgana; Privitera, Anna P; Bianchini, Paolo; Vicidomini, Giuseppe; Gulisano, Massimo; Diaspro, Alberto; Lanzanò, Luca.
Afiliação
  • Di Franco E; Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia, 64, 95123, Catania, Italy.
  • Costantino A; Laboratory of Synthetic and Systems Biology, Department of Drug and Health Sciences, University of Catania, Catania, Italy.
  • Cerutti E; Molecular Preclinical and Translational Imaging Research Centre-IMPRonTe, University of Catania, Catania, Italy.
  • D'Amico M; Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy.
  • Privitera AP; Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia, 64, 95123, Catania, Italy.
  • Bianchini P; Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
  • Vicidomini G; Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia, 64, 95123, Catania, Italy.
  • Gulisano M; Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia, 64, 95123, Catania, Italy.
  • Diaspro A; Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
  • Lanzanò L; Molecular Microscopy and Spectroscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.
Sci Rep ; 13(1): 2741, 2023 Feb 15.
Article em En | MEDLINE | ID: mdl-36792719
ABSTRACT
In point-scanning microscopy, optical sectioning is achieved using a small aperture placed in front of the detector, i.e. the detection pinhole, which rejects the out-of-focus background. The maximum level of optical sectioning is theoretically obtained for the minimum size of the pinhole aperture, but this is normally prevented by the dramatic reduction of the detected signal when the pinhole is closed, leading to a compromise between axial resolution and signal-to-noise ratio. We have recently demonstrated that, instead of closing the pinhole, one can reach a similar level of optical sectioning by tuning the pinhole size in a confocal microscope and by analyzing the resulting image series. The method, consisting in the application of the separation of photons by lifetime tuning (SPLIT) algorithm to series of images acquired with tunable pinhole size, is called SPLIT-pinhole (SPLIT-PIN). Here, we share and describe a SPLIT-PIN software for the processing of series of images acquired at tunable pinhole size, which generates images with reduced out-of-focus background. The software can be used on series of at least two images acquired on available commercial microscopes equipped with a tunable pinhole, including confocal and stimulated emission depletion (STED) microscopes. We demonstrate applicability on different types of imaging modalities (1) confocal imaging of DNA in a non-adherent cell line; (2) removal of out-of-focus background in super-resolved STED microscopy; (3) imaging of live intestinal organoids stained with a membrane dye.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália