Your browser doesn't support javascript.
loading
Facile Transformation from Rofecoxib to a New Near-Infrared Lipid Droplet Fluorescent Probe and Its Investigations on AIE Property, Solvatochromism and Mechanochromism.
Wei, Yongbo; Liu, Wei; Wang, Zexin; Chen, Nannan; Zhou, Jingming; Wu, Tong; Ye, Yuqiu; Ke, Yanbing; Jiang, Hong; Zhai, Xin; Xie, Lijun.
Afiliação
  • Wei Y; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Liu W; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
  • Wang Z; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Chen N; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Zhou J; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
  • Wu T; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Ye Y; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Ke Y; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Jiang H; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Zhai X; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
  • Xie L; Fujian Provincial Key Laboratory of Screening for Novel Microbial Proucts, Fujian Institute of Microbiology, Fuzhou 350007, China.
Molecules ; 28(4)2023 Feb 15.
Article em En | MEDLINE | ID: mdl-36838802
Lipid-related cancers cause a large number of deaths worldwide. Therefore, development of highly efficient Lipid droplets (LDs) fluorescent imaging probes will be beneficial to our understanding of lipid-related cancers by allowing us to track the metabolic process of LDs. In this work, a LDs-specific NIR (λmax = 698 nm) probe, namely BY1, was rationally designed and synthesized via a one-step reaction by integrating triphenylamine (electron-donor group) unit into the structure of rofecoxib. This integration strategy enabled the target BY1 to form a strong Donor-Acceptor (D-A) system and endowed BY1 with obvious aggregation-induced emission (AIE) effect. Meanwhile, BY1 also showed observable solvent effect and reversible mechanochromatic luminescent property, which could be interpreted clearly via density functional theory (DFT) calculations, differential scanning calorimetry (DSC), powder X-ray diffraction (XPRD), and single crystal X-ray data analysis. More importantly, BY1 exhibited highly specific fluorescent imaging ability (Pearson's correlation = 0.97) towards lipid droplets in living HeLa cells with low cytotoxicity. These results demonstrated that BY1 is a new promising fluorescent probe for lipid droplets imaging, and it might be beneficial to facilitate biological research of lipid-related cancers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Gotículas Lipídicas / Corantes Fluorescentes Limite: Humans Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Gotículas Lipídicas / Corantes Fluorescentes Limite: Humans Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China