Your browser doesn't support javascript.
loading
Fast and Efficient Simulation of the FEBID Process with Thermal Effects.
Kuprava, Alexander; Huth, Michael.
Afiliação
  • Kuprava A; Institute of Physics, Goethe University, 60438 Frankfurt am Main, Germany.
  • Huth M; Institute of Physics, Goethe University, 60438 Frankfurt am Main, Germany.
Nanomaterials (Basel) ; 13(5)2023 Feb 25.
Article em En | MEDLINE | ID: mdl-36903735
ABSTRACT
Focused electron-beam-induced deposition (FEBID) is a highly versatile direct-write approach with particular strengths in the 3D nanofabrication of functional materials. Despite its apparent similarity to other 3D printing approaches, non-local effects related to precursor depletion, electron scattering and sample heating during the 3D growth process complicate the shape-true transfer from a target 3D model to the actual deposit. Here, we describe an efficient and fast numerical approach to simulate the growth process, which allows for a systematic study of the influence of the most important growth parameters on the resulting shape of the 3D structures. The precursor parameter set derived in this work for the precursor Me3PtCpMe enables a detailed replication of the experimentally fabricated nanostructure, taking beam-induced heating into account. The modular character of the simulation approach allows for additional future performance increases using parallelization or drawing on the use of graphics cards. Ultimately, beam-control pattern generation for 3D FEBID will profit from being routinely combined with this fast simulation approach for optimized shape transfer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha