Your browser doesn't support javascript.
loading
Tectomer-Mediated Optical Nanosensors for Tyramine Determination.
Domínguez, Mario; Oliver, Sofía; Garriga, Rosa; Muñoz, Edgar; Cebolla, Vicente L; de Marcos, Susana; Galbán, Javier.
Afiliação
  • Domínguez M; Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA University of Zaragoza-CSIC), 50009 Zaragoza, Spain.
  • Oliver S; Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA University of Zaragoza-CSIC), 50009 Zaragoza, Spain.
  • Garriga R; Departamento de Química-Física, University of Zaragoza, 50009 Zaragoza, Spain.
  • Muñoz E; Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain.
  • Cebolla VL; Instituto de Carboquímica ICB-CSIC, 50018 Zaragoza, Spain.
  • de Marcos S; Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA University of Zaragoza-CSIC), 50009 Zaragoza, Spain.
  • Galbán J; Nanosensors and Bioanalytical Systems (N&SB), Analytical Chemistry Department, Faculty of Sciences, Instituto de Nanociencia y Materiales de Aragón (INMA University of Zaragoza-CSIC), 50009 Zaragoza, Spain.
Sensors (Basel) ; 23(5)2023 Feb 24.
Article em En | MEDLINE | ID: mdl-36904726
ABSTRACT
The development of optical sensors for in situ testing has become of great interest in the rapid diagnostics industry. We report here the development of simple, low-cost optical nanosensors for the semi-quantitative detection or naked-eye detection of tyramine (a biogenic amine whose production is commonly associated with food spoilage) when coupled to Au(III)/tectomer films deposited on polylactic acid (PLA) supports. Tectomers are two-dimensional oligoglycine self-assemblies, whose terminal amino groups enable both the immobilization of Au(III) and its adhesion to PLA. Upon exposure to tyramine, a non-enzymatic redox reaction takes place in which Au(III) in the tectomer matrix is reduced by tyramine to gold nanoparticles, whose reddish-purple color depends on the tyramine concentration and can be identified by measuring the RGB coordinates (Red-Green-Blue coordinates) using a smartphone color recognition app. Moreover, a more accurate quantification of tyramine in the range from 0.048 to 10 µM could be performed by measuring the reflectance of the sensing layers and the absorbance of the characteristic 550 nm plasmon band of the gold nanoparticles. The relative standard deviation (RSD) of the method was 4.2% (n = 5) with a limit of detection (LOD) of 0.014 µM. A remarkable selectivity was achieved for tyramine detection in the presence of other biogenic amines, especially histamine. This methodology, based on the optical properties of Au(III)/tectomer hybrid coatings, is promising for its application in food quality control and smart food packaging.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas Metálicas / Ouro Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha