Your browser doesn't support javascript.
loading
Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality.
Xu, Zhiyuan; Hu, Zhenhong; Jiao, Shuo; Bell, Stephen M; Xu, Qian; Ma, Longlong; Chen, Ji.
Afiliação
  • Xu Z; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess
  • Hu Z; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess
  • Jiao S; State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Bell SM; Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ-Université Paris-Saclay, Gif-sur-Yvette 91190, France.
  • Xu Q; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess
  • Ma L; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs of China, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess
  • Chen J; Department of Agroecology, Aarhus University, Tjele 8830, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele 8830, Denmark; iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde 4000, Denmark.
Sci Total Environ ; 878: 162972, 2023 Jun 20.
Article em En | MEDLINE | ID: mdl-36958562
ABSTRACT
Soil microbes play key roles that support forest ecosystem functioning, while their community characteristics are strongly determined by tree species identity. However, the majority studies primarily focus on soil microorganisms in the topsoil, resulting in limited understanding of the linkages between tree species identity and the microbial communities that inhabit deep soils. Here we investigated the diversity, structure, function, and co-occurrence networks of soil bacterial and fungal communities, as well as related soil physicochemical properties, to a depth of two meters in dryland forests dominated by either Pinus tabuliformis, a native coniferous species, Robinia pseudoacacia, an exotic broadleaf and nitrogen-fixing species, or both. Tree species identity had stronger effects on soil multifunctionality and microbial community structure in the deep layers (80-200 cm) than in the top layers (0-60 cm). In addition, fungal communities were more responsive to tree species identity, whereas bacteria were more sensitive to soil depth. Tree species identity strongly influenced microbial network stability and complexity, with higher quantities in R. pseudoacacia than the other plantations, by affecting microbial composition and their associations. The increased in microbial network complexity and the relative abundance of keystone taxa enhance the soil multifunctionality of microbial productivity, sugar and chitin degradation, and nutrient availability and cycling. Meanwhile, the relative abundance of keystone taxa was more representative of soil multifunctionality than microbial diversity. Our study highlights that tree species identity significantly influences soil microbial community characteristics and multifunctionality, especially in deep soils, which will help us understand soil nutrients processed in plantation forest ecosystem and provide a reference for tree species selection in ecological restoration.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Microbiota Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecossistema / Microbiota Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article