Valence-partitioned learning signals drive choice behavior and phenomenal subjective experience in humans.
bioRxiv
; 2023 Mar 18.
Article
em En
| MEDLINE
| ID: mdl-36993384
How the human brain generates conscious phenomenal experience is a fundamental problem. In particular, it is unknown how variable and dynamic changes in subjective affect are driven by interactions with objective phenomena. We hypothesize a neurocomputational mechanism that generates valence-specific learning signals associated with 'what it is like' to be rewarded or punished. Our hypothesized model maintains a partition between appetitive and aversive information while generating independent and parallel reward and punishment learning signals. This valence-partitioned reinforcement learning (VPRL) model and its associated learning signals are shown to predict dynamic changes in 1) human choice behavior, 2) phenomenal subjective experience, and 3) BOLD-imaging responses that implicate a network of regions that process appetitive and aversive information that converge on the ventral striatum and ventromedial prefrontal cortex during moments of introspection. Our results demonstrate the utility of valence-partitioned reinforcement learning as a neurocomputational basis for investigating mechanisms that may drive conscious experience.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
BioRxiv
Ano de publicação:
2023
Tipo de documento:
Article