Your browser doesn't support javascript.
loading
Integrating immunopeptidome analysis for the design and development of cancer vaccines.
Feola, Sara; Chiaro, Jacopo; Cerullo, Vincenzo.
Afiliação
  • Feola S; Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland.
  • Chiaro J; Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland.
  • Cerullo V; Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy. Electronic address: vincenzo.cerullo@helsinki.fi.
Semin Immunol ; 67: 101750, 2023 05.
Article em En | MEDLINE | ID: mdl-37003057
The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines. Moreover, the breakthrough of antibodies targeting immune checkpoint molecules has led to a new and strong interest in discovering suitable targets for CD8 +T cells. Therapeutic cancer vaccines are designed for the artificial generation and/or stimulation of CD8 +T cells; thus, their combination with ICIs to unleash the breaks of the immune system comes as a natural consequence to enhance anti-tumor efficacy. In this context, the identification and knowledge of peptide candidates take advantage of the fast technology updates in immunopeptidome and mass spectrometric methodologies, paying the way to the rational design of vaccines for immunotherapeutic approaches. In this review, we discuss mainly the role of immunopeptidome analysis and its application for the generation of therapeutic cancer vaccines with main focus on HLA-I peptides. Here, we review cancer vaccine platforms based on two different preparation methods: pathogens (viruses and bacteria) and not (VLPs, nanoparticles, subunits vaccines) that exploit discoveries in the ligandome field to generate and/or enhance anti-tumor specific response. Finally, we discuss possible drawbacks and future challenges in the field that remain still to be addressed.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vacinas Anticâncer / Neoplasias Limite: Animals / Humans Idioma: En Revista: Semin Immunol Assunto da revista: ALERGIA E IMUNOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Finlândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vacinas Anticâncer / Neoplasias Limite: Animals / Humans Idioma: En Revista: Semin Immunol Assunto da revista: ALERGIA E IMUNOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Finlândia