Your browser doesn't support javascript.
loading
Estimating explainable Alzheimer's disease likelihood map via clinically-guided prototype learning.
Mulyadi, Ahmad Wisnu; Jung, Wonsik; Oh, Kwanseok; Yoon, Jee Seok; Lee, Kun Ho; Suk, Heung-Il.
Afiliação
  • Mulyadi AW; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Jung W; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Oh K; Department of Artificial Intelligence, Korea University, Seoul 02841, Republic of Korea.
  • Yoon JS; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.
  • Lee KH; Gwangju Alzheimer's & Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Republic of Korea; Department of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea; Korea Brain Research Institute, Daegu 41062, Republic of Korea.
  • Suk HI; Department of Artificial Intelligence, Korea University, Seoul 02841, Republic of Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address: hisuk@korea.ac.kr.
Neuroimage ; 273: 120073, 2023 06.
Article em En | MEDLINE | ID: mdl-37037063
Identifying Alzheimer's disease (AD) involves a deliberate diagnostic process owing to its innate traits of irreversibility with subtle and gradual progression. These characteristics make AD biomarker identification from structural brain imaging (e.g., structural MRI) scans quite challenging. Using clinically-guided prototype learning, we propose a novel deep-learning approach through eXplainable AD Likelihood Map Estimation (XADLiME) for AD progression modeling over 3D sMRIs. Specifically, we establish a set of topologically-aware prototypes onto the clusters of latent clinical features, uncovering an AD spectrum manifold. Considering this pseudo map as an enriched reference, we employ an estimating network to approximate the AD likelihood map over a 3D sMRI scan. Additionally, we promote the explainability of such a likelihood map by revealing a comprehensible overview from clinical and morphological perspectives. During the inference, this estimated likelihood map served as a substitute for unseen sMRI scans for effectively conducting the downstream task while providing thorough explainable states.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer / Disfunção Cognitiva Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article