Developing a real-time detection tool and an early warning score using a continuous wearable multi-parameter monitor.
Front Physiol
; 14: 1138647, 2023.
Article
em En
| MEDLINE
| ID: mdl-37064911
Background: Currently-used tools for early recognition of clinical deterioration have high sensitivity, but with low specificity and are based on infrequent measurements. We aimed to develop a pre-symptomatic and real-time detection and warning tool for potential patients' deterioration based on multi-parameter real-time warning score (MPRT-WS). Methods: A total of more than 2 million measurements were collected, pooled, and analyzed from 521 participants, of which 361 were patients in general wards defined at high-risk for deterioration and 160 were healthy participants allocation as controls. The risk score stratification was based on cutoffs of multiple physiological parameters predefined by a panel of specialists, and included heart rate, blood oxygen saturation (SpO2), respiratory rate, cuffless systolic and diastolic blood pressure (SBP and DBP), body temperature, stroke volume (SV), cardiac output, and systemic vascular resistance (SVR), recorded every 5 min for a period of up to 72 h. The data was used to define the various risk levels of a real-time detection and warning tool, comparing it with the clinically-used National Early Warning Score (NEWS). Results: When comparing risk levels among patients using both tools, 92.6%, 6.1%, and 1.3% of the readings were defined as "Low", "Medium", and "High" risk with NEWS, and 92.9%, 6.4%, and 0.7%, respectively, with MPRT-WS (p = 0.863 between tools). Among the 39 patients that deteriorated, 30 patients received 'High' or 'Urgent' using the MPRT-WS (42.7 ± 49.1 h before they deteriorated), and only 6 received 'High' score using the NEWS. The main abnormal vitals for the MPRT-WS were SpO2, SBP, and SV for the "Urgent" risk level, DBP, SVR, and SBP for the "High" risk level, and DBP, SpO2, and SVR for the "Medium" risk level. Conclusion: As the new detection and warning tool is based on highly-frequent monitoring capabilities, it provides medical teams with timely alerts of pre-symptomatic and real-time deterioration.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Front Physiol
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Israel