Highly Active and Dispersed Pd Nanoparticles Stabilized by Lacunary Phosphomolybdate: Synthesis, Characterization, and Liquid Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
Inorg Chem
; 62(18): 6970-6980, 2023 May 08.
Article
em En
| MEDLINE
| ID: mdl-37104732
In the current scenario, one of the crucial reaction conversions is the synthesis of renewable biofuels and value-added chemicals from the hydrogenation of biomass. Therefore, in the present work, we are proposing aqueous phase conversion of levulinic acid to γ-valerolactone via hydrogenation using formic acid as a sustainable green hydrogen source over a sustainable heterogeneous catalyst. The catalyst based on Pd nanoparticles stabilized by lacunary phosphomolybdate (PMo11Pd) was designed for the same and characterized by EDX, FT-IR, 31P NMR, powder XRD, XPS, TEM, HRTEM, and HAADF-STEM analyses. A detailed optimization study was done to achieve maximum conversion (95% conversion), using a very small amount of Pd (1.879 × 10-3 mmol) with notable TON (2585) at 200 °C in 6 h. The regenerated catalyst was found to be workable (reusable) up to three cycles without any change in activity. Also, a plausible reaction mechanism was proposed. The catalyst exhibits superior activity against reported catalysts.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Índia