Your browser doesn't support javascript.
loading
Nrf2-/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM2.5 exposure.
Wu, Mengjie; Jiang, Menghui; Ding, Hao; Tang, Siying; Li, Daochuan; Pi, Jingbo; Zhang, Rong; Chen, Wen; Chen, Rui; Zheng, Yuxin; Piao, Jinmei.
Afiliação
  • Wu M; School of Public Health, Qingdao University, Qingdao, China.
  • Jiang M; School of Public Health, Qingdao University, Qingdao, China.
  • Ding H; The Municipal Government Hospital of Zibo, Zibo, Shandong, China.
  • Tang S; Qingdao Chengyang District Center for Disease Control and Prevention, Qingdao, China.
  • Li D; Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
  • Pi J; School of Public Health, China Medical University, Shenyang, China.
  • Zhang R; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China.
  • Chen W; Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
  • Chen R; School of Public Health, Capital Medical University, Beijing, China.
  • Zheng Y; School of Public Health, Qingdao University, Qingdao, China.
  • Piao J; School of Public Health, Qingdao University, Qingdao, China.
Front Genet ; 14: 1144903, 2023.
Article em En | MEDLINE | ID: mdl-37113990
ABSTRACT
Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Genet Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Genet Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China