MYB30 Regulates Submergence Tolerance by Repressing Ethylene Biosynthesis via ACS7 in Arabidopsis.
Plant Cell Physiol
; 64(7): 814-825, 2023 Jul 17.
Article
em En
| MEDLINE
| ID: mdl-37148388
Floods impose detrimental effects on natural and agro-ecosystems, leading to a significant loss of worldwide crop production. Global climate change has even worsened this situation. Flooding is a continuous process including two stages of submergence and re-oxygenation, and both are harmful to plant growth and development, resulting in a serious decline in crop yield. Therefore, the understanding of plant flooding tolerance and developing flooding-resistant crops are of great significance. Here, we report that the Arabidopsis thaliana (Arabidopsis) R2R3-MYB transcription factor MYB30 participates in plant submergence response through 1-aminocyclopropane-1-carboxylic acid synthase 7 (ACS7) by repressing ethylene (ET) biosynthesis. The MYB30 loss-of-function mutant exhibits reduced submergence tolerance with a higher level of ET production, whereas the MYB30-overexpressing plant displays enhanced submergence tolerance and repressed ET production. The coding gene of ACS7 might be a direct target of MYB30 during the submergence response. MYB30 binds to the promoter of ACS7 and represses its transcription. The ACS7 loss-of-function mutant with defect in ET biosynthesis displays enhanced submergence tolerance, whereas plants overexpressing ACS7 exhibit a submergence-sensitive phenotype. Genetic analysis shows that ACS7 functions downstream of MYB30 in both ET biosynthesis and submergence response. Taken together, our work revealed a novel transcriptional regulation that modulates submergence response in plants.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Arabidopsis
/
Proteínas de Arabidopsis
Idioma:
En
Revista:
Plant Cell Physiol
Assunto da revista:
BOTANICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China