A highly explicit electrochemical biosensor for catechol detection in real samples based on copper-polypyrrole.
RSC Adv
; 13(20): 13443-13455, 2023 May 02.
Article
em En
| MEDLINE
| ID: mdl-37152558
Catechol is a pollutant that can lead to serious health issues. Identification in aquatic environments is difficult. A highly specific, selective, and sensitive electrochemical biosensor based on a copper-polypyrrole composite and a glassy carbon electrode has been created for catechol detection. The novelty of this newly developed biosensor was tested using electrochemical techniques. The charge and mass transfer functions and partially reversible oxidation kinetics of catechol on the redesigned electrode surface were examined using electrochemical impedance spectroscopy and cyclic voltammetry scan rates. Using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry, the characteristics of sensitivity (8.5699 µA cm-2), LOD (1.52 × 10-7 µM), LOQ (3.52 × 10-5 µM), linear range (0.02-2500 µM), specificity, interference, and real sample detection were investigated. The morphological, structural, and bonding characteristics were investigated using XRD, Raman, FTIR, and SEM. Using an oxidation-reduction technique, a suitable biosensor material was produced. In the presence of interfering compounds, it was shown that it was selective for catechol, like an enzyme.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
RSC Adv
Ano de publicação:
2023
Tipo de documento:
Article