Your browser doesn't support javascript.
loading
Functionalized Metal-Organic Framework-Modified Hydrogel That Breaks the Vicious Cycle of Inflammation and ROS for Repairing of Diabetic Bone Defects.
Lao, An; Wu, Jiaqing; Li, Dejian; Shen, Aili; Li, Yaxin; Zhuang, Yu; Lin, Kaili; Wu, Jianyong; Liu, Jiaqiang.
Afiliação
  • Lao A; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
  • Wu J; Department of Stomatology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
  • Li D; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
  • Shen A; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
  • Li Y; Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201301, China.
  • Zhuang Y; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
  • Lin K; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
  • Wu J; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
  • Liu J; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
Small ; 19(36): e2206919, 2023 09.
Article em En | MEDLINE | ID: mdl-37183293
ABSTRACT
The regeneration of diabetic bone defects remains challenging. Hyperglycemia causes inflammation state and excessive reactive oxygen species (ROS) during bone regeneration period. These two effects reinforce one another and create an endless loop that is also accompanied by mitochondrial dysfunction. However, there is still no effective and inclusive method targeting at the two aspects and breaking the vicious cycle. Herein, nanoparticles-Met@ZIF-8(metformin loaded zeolitic imidazolate frameworks) modified hydrogel that is capable of releasing metformin and Zn elements are constructed. This hydrogel treats hyperglycemia while also controlling mitochondrial function, reducing inflammation, and restoring homeostasis. In addition, the synergetic effect from metformin and Zn ions inhibits ROS-inflammation cascade generation and destroys the continuous progress by taking effects in both ROS and inflammation and further keeping organelles' homeostasis. Furthermore, with the recovery of mitochondria and breakdown of the ROS-inflammation cascade cycle, osteogenesis under a diabetic microenvironment is enhanced in vivo and in vitro. In conclusion, the study provides critical insight into the biological mechanism and potential therapy for diabetic bone regeneration.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Estruturas Metalorgânicas / Hiperglicemia Limite: Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diabetes Mellitus / Estruturas Metalorgânicas / Hiperglicemia Limite: Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article