Bifurcations driven by generalist and specialist predation: mathematical interpretation of Fennoscandia phenomenon.
J Math Biol
; 86(6): 94, 2023 05 21.
Article
em En
| MEDLINE
| ID: mdl-37210699
In this paper, we revisit a predator-prey model with specialist and generalist predators proposed by Hanski et al. (J Anim Ecol 60:353-367, 1991) , where the density of generalist predators is assumed to be a constant. It is shown that the model admits a nilpotent cusp of codimension 4 or a nilpotent focus of codimension 3 for different parameter values. As the parameters vary, the model can undergo cusp type (or focus type) degenerate Bogdanov-Takens bifurcations of codimension 4 (or 3). Our results indicate that generalist predation can induce more complex dynamical behaviors and bifurcation phenomena, such as three small-amplitude limit cycles enclosing one equilibrium, one or two large-amplitude limit cycles enclosing one or three equilibria, three limit cycles appearing in a Hopf bifurcation of codimension 3 and dying in a homoclinic bifurcation of codimension 3. In addition, we show that generalist predation stabilizes the limit cycle driven by specialist predators to a stable equilibrium, which clearly explains the famous Fennoscandia phenomenon.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Comportamento Predatório
/
Modelos Biológicos
Limite:
Animals
Idioma:
En
Revista:
J Math Biol
Ano de publicação:
2023
Tipo de documento:
Article