Leaky FinFET for Reservoir Computing with Temporal Signal Processing.
ACS Appl Mater Interfaces
; 15(22): 26960-26966, 2023 Jun 07.
Article
em En
| MEDLINE
| ID: mdl-37226332
Reservoir computing can greatly reduce the hardware and training costs of recurrent neural networks with temporal data processing. To implement reservoir computing in a hardware form, physical reservoirs transforming sequential inputs into a high-dimensional feature space are necessary. In this work, a physical reservoir with a leaky fin-shaped field-effect transistor (L-FinFET) is demonstrated by the positive use of a short-term memory property arising from the absence of an energy barrier to suppress the tunneling current. Nevertheless, the L-FinFET reservoir does not lose its multiple memory states. The L-FinFET reservoir consumes very low power when encoding temporal inputs because the gate serves as an enabler of the write operation, even in the off-state, due to its physical insulation from the channel. In addition, the small footprint area arising from the scalability of the FinFET due to its multiple-gate structure is advantageous for reducing the chip size. After the experimental proof of 4-bit reservoir operations with 16 states for temporal signal processing, handwritten digits in the Modified National Institute of Standards and Technology dataset are classified by reservoir computing.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2023
Tipo de documento:
Article