Your browser doesn't support javascript.
loading
Entropy Dissipation for Degenerate Stochastic Differential Equations via Sub-Riemannian Density Manifold.
Feng, Qi; Li, Wuchen.
Afiliação
  • Feng Q; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Li W; Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA.
Entropy (Basel) ; 25(5)2023 May 11.
Article em En | MEDLINE | ID: mdl-37238541
We studied the dynamical behaviors of degenerate stochastic differential equations (SDEs). We selected an auxiliary Fisher information functional as the Lyapunov functional. Using generalized Fisher information, we conducted the Lyapunov exponential convergence analysis of degenerate SDEs. We derived the convergence rate condition by generalized Gamma calculus. Examples of the generalized Bochner's formula are provided in the Heisenberg group, displacement group, and Martinet sub-Riemannian structure. We show that the generalized Bochner's formula follows a generalized second-order calculus of Kullback-Leibler divergence in density space embedded with a sub-Riemannian-type optimal transport metric.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Entropy (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Entropy (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos