Your browser doesn't support javascript.
loading
H-bond interaction traps vibrating fluorophore in polyurethane matrix for bifunctional environmental monitoring.
Li, Wen; Qiao, Mengyuan; Chen, Ziyu; Jin, Xin; Su, Yonghao; Chen, Xuanying; Guo, Lifang; Zhang, Zhiyun; Su, Jianhua.
Afiliação
  • Li W; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Qiao M; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Chen Z; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Jin X; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Su Y; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Chen X; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Guo L; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Zhang Z; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
  • Su J; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technolog
Chem Commun (Camb) ; 59(48): 7439-7442, 2023 Jun 13.
Article em En | MEDLINE | ID: mdl-37254604
ABSTRACT
A simple strategy is presented for the bifunctional detection of environmental organic vapor and temperature by utilizing H-bond interactions to trap a butterfly-vibration-based fluorophore (DPAC-OH) in a polyurethane (PU) matrix. The method opens up a new path for large-scale environmental inspections and the design of dual-response luminescent materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Commun (Camb) Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Commun (Camb) Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article