Your browser doesn't support javascript.
loading
Transfer learning enables predictions in network biology.
Theodoris, Christina V; Xiao, Ling; Chopra, Anant; Chaffin, Mark D; Al Sayed, Zeina R; Hill, Matthew C; Mantineo, Helene; Brydon, Elizabeth M; Zeng, Zexian; Liu, X Shirley; Ellinor, Patrick T.
Afiliação
  • Theodoris CV; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA. christina.theodoris@gladstone.ucsf.edu.
  • Xiao L; Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA. christina.theodoris@gladstone.ucsf.edu.
  • Chopra A; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA. christina.theodoris@gladstone.ucsf.edu.
  • Chaffin MD; Harvard Medical School Genetics Training Program, Boston, USA. christina.theodoris@gladstone.ucsf.edu.
  • Al Sayed ZR; Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Hill MC; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
  • Mantineo H; Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA.
  • Brydon EM; Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Zeng Z; Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Liu XS; Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Ellinor PT; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
Nature ; 618(7965): 616-624, 2023 Jun.
Article em En | MEDLINE | ID: mdl-37258680
ABSTRACT
Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia / Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia / Redes Neurais de Computação / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos