Your browser doesn't support javascript.
loading
Nanoplastics enhance the intestinal damage and genotoxicity of sulfamethoxazole to medaka juveniles (Oryzias melastigma) in coastal environment.
Li, Xue; Luo, Jiwei; Han, Chenglong; Lu, Xueqiang.
Afiliação
  • Li X; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
  • Luo J; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
  • Han C; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
  • Lu X; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address: luxq@nankai.e
Sci Total Environ ; 894: 164943, 2023 Oct 10.
Article em En | MEDLINE | ID: mdl-37329919
ABSTRACT
Antibiotics and nanoplastics are widely detected in the coastal ecosystem. However, the transcriptome mechanism elucidating the effect of antibiotics and nanoplastics co-exposure on the gene expression of aquatic organisms in coastal environment is still unclear. Here, single and joint effects of sulfamethoxazole (SMX) and polystyrene nanoplastics (PS-NPs) on the intestinal health and gene expression of medaka juveniles (Oryzias melastigma), which live in coastal environment, were investigated. The SMX and PS-NPs co-exposure decreased intestinal microbiota diversity compared to the PS-NPs, and caused more adverse effect on the intestinal microbiota composition and intestinal damage compared to the SMX, indicating that PS-NPs might enhance the toxicity of SMX on the medaka intestine. The increased abundance of Proteobacteria in the intestine was observed in the co-exposure group, which might induce the intestinal epithelium damage. In addition, the differentially expressed genes (DEGs) were mainly involved in the drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450 pathways in visceral tissue after the co-exposure. The expression of the host immune system genes (e.g., ifi30) could be associated with the increased pathogens in intestinal microbiota. This study is useful for understanding the toxicity effect of antibiotics and NPs on aquatic organisms in coastal ecosystem.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Oryzias Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Oryzias Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China