Your browser doesn't support javascript.
loading
Genomic data provide a robust phylogeny backbone for Rhodiola L. (Crassulaceae) and reveal extensive reticulate evolution during its rapid radiation.
Ren, Chun-Qian; Zhang, Dan-Qing; Liu, Xiao-Ying; Zhang, Jian-Qiang.
Afiliação
  • Ren CQ; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal Un
  • Zhang DQ; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal Un
  • Liu XY; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal Un
  • Zhang JQ; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, Shaanxi Normal Un
Mol Phylogenet Evol ; 186: 107863, 2023 09.
Article em En | MEDLINE | ID: mdl-37329933
The Tibetan Plateau and adjacent mountain regions (TP; including the Tibetan Plateau, Himalaya, Hengduan Mountains and Mountains of Central Asia) harbor great biodiversity, some lineages on which may have undergone rapid radiations. However, only a few studies have investigated the evolutionary pattern of such diversification in depth using genomic data. In this study, we reconstructed a robust phylogeny backbone of Rhodiola, a lineage that may have undergone rapid radiation in the TP, using Genotyping-by-sequencing data, and conducted a series of gene flow and diversification analyses. The concatenation and coalescent-based methods yield similar tree topologies, and five well-supported clades were revealed. Potential gene flow and introgression events were detected, both between species from different major clades and closely related species, suggesting pervasive hybridization and introgression. An initial rapid and later slowdown of the diversification rate was revealed, indicating niche filling. Molecular dating and correlation analyses showed that the uplift of TP and global cooling in the mid-Miocene might have played an important role in promoting the rapid radiation of Rhodiola. Our work demonstrates that gene flow and introgression might be an important contributor to rapid radiation possibly by quickly reassembling old genetic variation into new combinations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Crassulaceae / Rhodiola Idioma: En Revista: Mol Phylogenet Evol Assunto da revista: BIOLOGIA / BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Crassulaceae / Rhodiola Idioma: En Revista: Mol Phylogenet Evol Assunto da revista: BIOLOGIA / BIOLOGIA MOLECULAR Ano de publicação: 2023 Tipo de documento: Article