Your browser doesn't support javascript.
loading
Discovery of novel hybrids of mTOR inhibitor and NO donor as potential anti-tumor therapeutics.
Gao, Xin; Zhao, Fang; Wang, Yang; Ma, Xiaodong; Chai, Huayi; Han, Jingjing; Fang, Fang.
Afiliação
  • Gao X; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
  • Zhao F; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
  • Wang Y; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
  • Ma X; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
  • Chai H; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
  • Han J; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
  • Fang F; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China. Electronic address: ffahtcm@
Bioorg Med Chem ; 91: 117402, 2023 08 15.
Article em En | MEDLINE | ID: mdl-37421709
Nitric oxide (NO) may be beneficial to overcoming drug resistance resulting from mutation of mTOR kinases and bypass mechanisms. In this study, a novel structural series of hybrids of mTOR inhibitor and NO donor were designed and synthesized via structure-based drug design (SBDD). Throughout the 20 target compounds, half of the compounds (13a, 13b, 19a-19d, 19f-19j) demonstrated attractive mTOR inhibitory activity with IC50 at single-digit nanomolar level. In particular, 19f exerted superior anti-proliferative activity against HepG2, MCF-7, HL-60 cells (HepG2, IC50 = 0.24 µM; MCF-7, IC50 = 0.88 µM; HL-60, IC50 = 0.02 µM) to that of the clinical investigated mTOR inhibitor MLN0128, and show mild cytotoxicity against normal cells with IC50 over 10 µM. 19a, with the most potent mTOR inhibitory activity in this series (IC50 = 3.31 nM), also displayed attractive cellular potency. In addition, 19f treatment in HL-60 reduces the levels of Phos-Akt and Phos-S6 in a dose-dependent manner, and releases NO in cells. In summary, 19f deserves further development as a novel mTOR-based multi-target anti-cancer agent.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias / Antineoplásicos Limite: Humans Idioma: En Revista: Bioorg Med Chem Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias / Antineoplásicos Limite: Humans Idioma: En Revista: Bioorg Med Chem Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China