Your browser doesn't support javascript.
loading
Models of KPTN-related disorder implicate mTOR signalling in cognitive and overgrowth phenotypes.
Levitin, Maria O; Rawlins, Lettie E; Sanchez-Andrade, Gabriela; Arshad, Osama A; Collins, Stephan C; Sawiak, Stephen J; Iffland, Phillip H; Andersson, Malin H L; Bupp, Caleb; Cambridge, Emma L; Coomber, Eve L; Ellis, Ian; Herkert, Johanna C; Ironfield, Holly; Jory, Logan; Kretz, Perrine F; Kant, Sarina G; Neaverson, Alexandra; Nibbeling, Esther; Rowley, Christine; Relton, Emily; Sanderson, Mark; Scott, Ethan M; Stewart, Helen; Shuen, Andrew Y; Schreiber, John; Tuck, Liz; Tonks, James; Terkelsen, Thorkild; van Ravenswaaij-Arts, Conny; Vasudevan, Pradeep; Wenger, Olivia; Wright, Michael; Day, Andrew; Hunter, Adam; Patel, Minal; Lelliott, Christopher J; Crino, Peter B; Yalcin, Binnaz; Crosby, Andrew H; Baple, Emma L; Logan, Darren W; Hurles, Matthew E; Gerety, Sebastian S.
Afiliação
  • Levitin MO; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Rawlins LE; Evox Therapeutics Limited, Oxford OX4 4HG, UK.
  • Sanchez-Andrade G; RILD Wellcome Wolfson Medical Research Centre, University of Exeter, Exeter EX2 5DW, UK.
  • Arshad OA; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX1 2ED, UK.
  • Collins SC; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Sawiak SJ; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Iffland PH; INSERM Unit 1231, Université de Bourgogne Franche-Comté, Dijon 21078, France.
  • Andersson MHL; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.
  • Bupp C; Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.
  • Cambridge EL; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
  • Coomber EL; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Ellis I; Spectrum Health, Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA.
  • Herkert JC; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Ironfield H; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Jory L; Department of Clinical Genetics, Alder Hey Children's Hospital, Liverpool L14 5AB, UK.
  • Kretz PF; Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands.
  • Kant SG; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Neaverson A; Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK.
  • Nibbeling E; IGBMC, UMR7104, INSERM, Illkirch 67404, France.
  • Rowley C; Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands.
  • Relton E; Department of Clinical Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands.
  • Sanderson M; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Scott EM; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Stewart H; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
  • Shuen AY; Laboratory for Diagnostic Genome Analysis, Department of Clinical Genetics, Leiden University Medical Center, Leiden 3015 GD, The Netherlands.
  • Schreiber J; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Tuck L; Institute of Metabolic Science, Cambridge University, Cambridge CB2 0QQ, UK.
  • Tonks J; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Terkelsen T; Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7YH, UK.
  • van Ravenswaaij-Arts C; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Vasudevan P; New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA.
  • Wenger O; Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford OX3 7HE, UK.
  • Wright M; London Health Sciences Centre, London, ON N6A 5W9, Canada.
  • Day A; Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5W9, Canada.
  • Hunter A; Department of Neurology, Children's National Medical Center, Washington DC 20007, USA.
  • Patel M; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Lelliott CJ; Haven Clinical Psychology Practice Ltd, Bude, Cornwall EX23 9HP, UK.
  • Crino PB; Department of Clinical Genetics, Aarhus University Hospital, Aarhus DK-8200, Denmark.
  • Yalcin B; Department of Genetics, University Medical Centre, University of Groningen, Groningen 9713 GZ, The Netherlands.
  • Crosby AH; Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, UK.
  • Baple EL; New Leaf Center, Clinic for Special Children, Mount Eaton, OH 44659, USA.
  • Logan DW; Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne NE1 7RU, UK.
  • Hurles ME; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
  • Gerety SS; Qkine Ltd., Cambridge CB5 8HW, UK.
Brain ; 146(11): 4766-4783, 2023 11 02.
Article em En | MEDLINE | ID: mdl-37437211
KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Serina-Treonina Quinases TOR Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Brain Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Serina-Treonina Quinases TOR Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Brain Ano de publicação: 2023 Tipo de documento: Article