Core-Shell-Structured Electrorheological Fluid with a Polarizability-Tunable Nanocarbon Shell for Enhanced Stimuli-Responsive Activity.
ACS Appl Mater Interfaces
; 15(29): 35741-35749, 2023 Jul 26.
Article
em En
| MEDLINE
| ID: mdl-37449438
The incorporation of nanocarbon-based materials into electrorheological fluids has been shown to be an effective means of improving the electrorheological (ER) response. However, the mechanism of the sp2/sp3-hybridized carbon structure and high ER response is still under investigation. Herein, barium titanate@nanocarbon shell (BTO@NCs) composites are proposed and prepared by introducing carbonized polydopamine (C-PDA) into a shell. When the polymerization time of dopamine is tuned, the shell thickness, surface polar functional groups, and sp2/sp3-hybridized carbon can be effectively controlled. The maximum yield stress of the BTO@NCs-24 h ER fluid reaches 2.5 kPa under an electric field of 4 kV mm-1, which is attributed to the increased content of sp3 C-OH and oxygenous functional groups within the shell, resulting in a rapidly achievable polarization. Furthermore, the SiO2@NCs and TiO2@NCs ER fluids are also prepared with enhanced ER behavior in these phenomena, confirming an approach to high-performance ER fluids based on nanocarbon composites.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2023
Tipo de documento:
Article