Your browser doesn't support javascript.
loading
3D bioprinting-a model for skin aging.
Ansaf, Ryeim B; Ziebart, Rachel; Gudapati, Hemanth; Simoes Torigoe, Rafaela Mayumi; Victorelli, Stella; Passos, Joao; Wyles, Saranya P.
Afiliação
  • Ansaf RB; Department of Biology, Colorado State University Pueblo, Pueblo, CO 81001, USA.
  • Ziebart R; Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA.
  • Gudapati H; Mayo Clinic Department of Dermatology, Rochester, MN 55905, USA.
  • Simoes Torigoe RM; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA.
  • Victorelli S; Mayo Clinic Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA.
  • Passos J; Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
  • Wyles SP; Mayo Clinic Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA.
Regen Biomater ; 10: rbad060, 2023.
Article em En | MEDLINE | ID: mdl-37501679
ABSTRACT
Human lifespan continues to extend as an unprecedented number of people reach their seventh and eighth decades of life, unveiling chronic conditions that affect the older adult. Age-related skin conditions include senile purpura, seborrheic keratoses, pemphigus vulgaris, bullous pemphigoid, diabetic foot wounds and skin cancer. Current methods of drug testing prior to clinical trials require the use of pre-clinical animal models, which are often unable to adequately replicate human skin response. Therefore, a reliable model for aged human skin is needed. The current challenges in developing an aged human skin model include the intrinsic variability in skin architecture from person to person. An ideal skin model would incorporate innate functionality such as sensation, vascularization and regeneration. The advent of 3D bioprinting allows us to create human skin equivalent for use as clinical-grade surgical graft, for drug testing and other needs. In this review, we describe the process of human skin aging and outline the steps to create an aged skin model with 3D bioprinting using skin cells (i.e. keratinocytes, fibroblasts and melanocytes). We also provide an overview of current bioprinted skin models, associated limitations and direction for future research.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Regen Biomater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Regen Biomater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos