Your browser doesn't support javascript.
loading
Achieved 18.9% Efficiency by Fine-Tuning Non-Fullerene Acceptor Content to Simultaneously Increase the Short-Circuit Current and Fill Factor of Organic Solar Cells.
Huang, Tianhuan; Zhang, Zheling; Liao, Qiaogan; Wang, Dongjie; Zhang, Yang; Geng, Shuang; Guan, Hao; Cao, Ziliang; Huang, Yu; Zhang, Jian.
Afiliação
  • Huang T; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Zhang Z; School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Liao Q; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Wang D; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Zhang Y; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Geng S; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Guan H; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Cao Z; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Huang Y; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
  • Zhang J; Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China.
Small ; 19(47): e2303399, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37505478
ABSTRACT
In this study, using PM6L8-BO as the main system and non-fullerene acceptor IDIC as the third component, a series of ternary organic solar cells (TOSCs) are fabricated. The results reveal that IDIC plays a significant role in enhancing the performance of TOSCs by optimizing the morphology of blended films and forming interpenetrating nanostructure. The improved film morphology facilitates exciton dissociation and collection in TOSCs, which causes an increase in the short-circuit current density (JSC ) and fill factor (FF). Further, by optimizing the IDIC content, the power conversion efficiency (PCE) of TOSCs reaches 18.9%. Besides, the prepared TOSCs exhibit a JSC of 27.51 mA cm-2 and FF of 76.64%, which are much higher than those of PM6L8-BO-based organic solar cells (OSCs). Furthermore, the addition of IDIC improves the long-term stability of the OSCs. Meanwhile, TOSCs with a large effective area of 1.00 cm2 have been prepared, which exhibit a PCE of 12.4%. These findings suggest that modifying the amount of the third component can be a useful strategy to construct hight-efficiency TOSCs with practical application potential.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article