Your browser doesn't support javascript.
loading
Temporal and Spatial Trends in Benthic Infauna and Potential Drivers, in a Highly Tidal Estuary in Atlantic Canada.
Guerin, Andrew J; Kidd, Karen A; Maltais, Marie-Josée; Mercer, Angella; Hunt, Heather L.
Afiliação
  • Guerin AJ; Department of Biology, McMaster University, Hamilton, ON Canada.
  • Kidd KA; Department of Biology, McMaster University, Hamilton, ON Canada.
  • Maltais MJ; School of Earth, Environment and Society, McMaster University, Hamilton, ON Canada.
  • Mercer A; Department of Biological Sciences, University of New Brunswick, Saint John, NB Canada.
  • Hunt HL; Department of Biological Sciences, University of New Brunswick, Saint John, NB Canada.
Estuaries Coast ; 46(6): 1612-1631, 2023.
Article em En | MEDLINE | ID: mdl-37520332
ABSTRACT
Infaunal invertebrate communities of coastal marine sediments are often impacted by human activities, particularly in harbours and estuaries. However, while many studies have attempted to identify the key factors affecting benthic infauna, few have done so for highly energetic tidal estuaries. Samples were collected over a decade (2011-2020) from a series of reference sites in Saint John Harbour (45.25° N, 66.05° W), a highly tidal estuary in the Bay of Fundy, Canada. These data were used to examine spatial and temporal trends in infaunal invertebrate communities and sediment properties and to determine the extent to which the biological patterns were driven by measured physical and chemical variables. There were substantial differences among sites in infaunal invertebrate abundance (median ranging from 688 to 13,700 individuals per square meter), infaunal species richness (median ranging from 8 to 22), and Shannon diversity (median ranging from 1.26 to 2.34); multivariate analysis also revealed variation in species composition among sites. Sediment contaminant concentrations also varied among sites, but differences tended to be smaller (e.g. median chromium concentrations ranging from 21.6 to 27.6 mg/kg). Sample contaminant concentrations were all below probable effect levels, and almost all below threshold effect levels (Canadian interim sediment quality guidelines), but relationships with biological data were still detectable. However, physical variables (depth, sediment characteristics) were better predictors of biological variables and community composition. These results confirm the importance of physical factors in shaping infaunal communities in soft-sediment habitats in tidally influenced coastal waters. Supplementary Information The online version contains supplementary material available at 10.1007/s12237-023-01222-w.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Estuaries Coast Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Estuaries Coast Ano de publicação: 2023 Tipo de documento: Article