Rydberg State Single-Mode Polariton Lasing with Ultralow Threshold via Symmetry Engineering.
Nano Lett
; 23(17): 7797-7804, 2023 Sep 13.
Article
em En
| MEDLINE
| ID: mdl-37590122
Symmetry plays an essential role in the fundamental properties of a physical system. In this work, we report on the realization of tunable single-mode polariton lasing from highly excited Rydberg states via symmetry engineering. By breaking the symmetry of the polaritonic wave function through potential wells and controlling the spatial overlap between the gain region and the eigen mode, we are able to generate single-mode polariton lasing, reversibly and dynamically, from quantized polariton states. Increasing the asymmetry of the potential well, single-mode lasing can be achieved even for the highly excited Rydberg state with a principle quantum number of N = 14. Moreover, as a result of the excellent reservoir-eigen mode overlap and efficient spatial confinement, the threshold of lasing can be reduced up to 6 orders of magnitude, compared with those conventional pumping schemes. Our results present a new strategy toward the realization of thresholdless polariton lasing with dynamical tunability.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China