Quantifying the Relaxation Dynamics of Higher Electronic Excited States in Perylene.
J Phys Chem Lett
; 14(36): 8000-8008, 2023 Sep 14.
Article
em En
| MEDLINE
| ID: mdl-37650733
Gating logical operations through high-lying electronic excited states presents opportunities for developing ultrafast, subnanometer computational devices. A lack of molecular systems with sufficiently long-lived higher excited states has hindered practical realization of such devices, but recent studies have reported intriguing photophysics from high-lying excited states of perylene. In this work, we use femtosecond spectroscopy supported by quantum chemical calculations to identify and quantify the relaxation dynamics of monomeric perylene's higher electronic excited states. The 21B2u state is accessed through single-photon absorption at 250 nm, while the optically dark 21Ag state is excited via the 11B3u state. Population of either state results in subpicosecond relaxation to the 11B3u state, and we quantify 21Ag and 21B2u state lifetimes of 340 and 530 fs, respectively. These lifetimes are significantly longer than the singlet fission time constant from the perylene 21B2u state, suggesting that the higher electronic states of perylene may be useful for gating logical operations.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Chem Lett
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Austrália