Your browser doesn't support javascript.
loading
Enhancement of rice husks saccharification through hydrolase preparation assisted by lytic polysaccharide monooxygenase.
Jia, Li; Zhao, Lei; Qin, Bo; Lu, Fuping; Liu, Dingkuo; Liu, Fufeng.
Afiliação
  • Jia L; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China.
  • Zhao L; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China.
  • Qin B; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China.
  • Lu F; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China.
  • Liu D; Tianjin Enterprise Key Laboratory of Biological Feed Additives, Tianjin 300111, PR China.
  • Liu F; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, PR China. Electronic address
Enzyme Microb Technol ; 171: 110319, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37672961
ABSTRACT
Rice husk is an abundant agricultural waste generated from rice production, but its application is limited. Considering its complex components, the rice husk was hydrolyzed by different enzymes to enhance its saccharification. In this study, saccharification of the rice husk by cellulase, xylosidase, and xylanase was first investigated. The synergistic effect of LPMO on the above hydrolases and different enzyme combinations in the saccharification process was then explored. Thereafter, the formulation of the enzyme cocktail and the degradation conditions were optimized to obtain the highest saccharification efficiency. The results showed that the optimum enzyme cocktail consists of Celluclast 1.5 L (83.3 mg/g substrate), the key enzymes in the saccharification process, worked with BpXyl (20 mg/g substrate), BpXyn11 (24 mg/g substrate), and R17L/N25G (4 mg/g substrate). The highest reducing sugar concentration (1.19 mg/mL) was obtained at pH 6.0 and 60 â„ƒ for 24 h. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the structural changes in the rice husk after degradation. The results showed that the key chemical bonds in cellulose and hemicellulose were broken. This study illuminated the concept of saccharifying lignocellulose from rice husk using LPMO synergistically assisted combined-hydrolase including cellulase, xylosidase, and xylanase, and provided a theoretical basis for lignocellulose biodegradation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Xilosidases / Celulase Idioma: En Revista: Enzyme Microb Technol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Xilosidases / Celulase Idioma: En Revista: Enzyme Microb Technol Ano de publicação: 2023 Tipo de documento: Article