Your browser doesn't support javascript.
loading
Sabatier Relations in Electrocatalysts Based on High-entropy Alloys with Wide-distributed d-band Centers for Li-O2 Batteries.
Tian, Jiaming; Rao, Yuan; Shi, Wenhui; Yang, Jiawei; Ning, Wenjie; Li, Haoyu; Yao, Yonggang; Zhou, Haoshen; Guo, Shaohua.
Afiliação
  • Tian J; College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, N
  • Rao Y; Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China.
  • Shi W; College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, N
  • Yang J; Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China.
  • Ning W; State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
  • Li H; College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, N
  • Yao Y; College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, N
  • Zhou H; College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, N
  • Guo S; Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518057, P. R. China.
Angew Chem Int Ed Engl ; 62(44): e202310894, 2023 Oct 26.
Article em En | MEDLINE | ID: mdl-37698488
ABSTRACT
Li-O2 battery (LOB) is a promising "beyond Li-ion" technology with ultrahigh theoretical energy density (3457 Wh kg-1 ), while currently impeded by the sluggish cathodic kinetics of the reversible gas-solid reaction between O2 and Li2 O2 . Despite many catalysts are developed for accelerating the conversion process, the lack of design guidance for achieving high performance makes catalysts exploring aleatory. The Sabatier principle is an acknowledged theory connecting the scaling relationship with heterogeneous catalytic activity, providing a tradeoff strategy for the topmost performance. Herein, a series of catalysts with wide-distributed d-band centers (i.e., wide range of adsorption strength) are elaborately constructed via high-entropy strategy, enabling an in-depth study of the Sabatier relations in electrocatalysts for LOBs. A volcano-type correlation of d-band center and catalytic activity emerges. Both theoretical and experimental results indicate that a moderate d-band center with appropriate adsorption strength propels the catalysts up to the top. As a demonstration of concept, the LOB using FeCoNiMnPtIr as catalyst provides an exceptional energy conversion efficiency of over 80 %, and works steadily for 2000 h with a high fixed specific capacity of 4000 mAh g-1 . This work certifies the applicability of Sabatier principle as a guidance for designing advanced heterogeneous catalysts assembled in LOBs.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2023 Tipo de documento: Article