Your browser doesn't support javascript.
loading
Under-reported time-varying MINAR(1) process for modeling multivariate count series.
Aghabazaz, Zeynab; Kazemi, Iraj.
Afiliação
  • Aghabazaz Z; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, USA.
  • Kazemi I; Department of Statistics, Faculty of Mathematics & Statistics, University of Isfahan, Iran.
Article em En | MEDLINE | ID: mdl-37700855
A time-varying multivariate integer-valued autoregressive of order one (tvMINAR(1)) model is introduced for the non-stationary time series of correlated counts when under-reporting is likely present. A non-diagonal autoregression probability network is structured to preserve the cross-correlation of multivariate series, provide a necessary condition to ease model-fittings computations, and derive the full likelihood using the Viterbi algorithm. The motivating construction applies to fully under-reported counts that rely on a mixture presentation of the random thinning operator. Simulation studies are conducted to examine the proposed model, and the analysis of COVID-19 daily cases is accomplished to highlight its usefulness in applications. Finally, the comparison of models is presented using the posterior predictive checking method.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Stat Data Anal Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Comput Stat Data Anal Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos