Your browser doesn't support javascript.
loading
Effect of electrical and chemical (activation versus inactivation) stimulation of the infralimbic division of the medial prefrontal cortex in rats with chronic neuropathic pain.
Moura-Pacheco, Thais Lohanny; Martins-Pereira, Renata Cristina; Medeiros, Priscila; Sbragia, Lourenço; Ramos Andrade Leite-Panissi, Christie; Machado, Hélio Rubens; Coimbra, Norberto Cysne; de Freitas, Renato Leonardo.
Afiliação
  • Moura-Pacheco TL; Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • Martins-Pereira RC; Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • Medeiros P; Pediatric Surgery Laboratory, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • Sbragia L; Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • Ramos Andrade Leite-Panissi C; Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • Machado HR; Protection Laboratory in Childhood, Division of Neurosurgery, Department of Surgery and Anatomy, FMRP-USP, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • Coimbra NC; Multi-User Center of Neuroelectrophysiology, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
  • de Freitas RL; Laboratory of Neurosciences of Pain and Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
Exp Brain Res ; 241(11-12): 2591-2604, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37725136
ABSTRACT
Neuropathic pain (NP) represents a complex disorder with sensory, cognitive, and emotional symptoms. The medial prefrontal cortex (mPFC) takes critical regulatory roles and may change functionally and morphologically during chronic NP. There needs to be a complete understanding of the neurophysiological and psychopharmacological bases of the NP phenomenon. This study aimed to investigate the participation of the infralimbic division (IFL) of the mPFC in chronic NP, as well as the role of the N-methyl-D-aspartic acid receptor (NMDAr) in the elaboration of chronic NP. Male Wistar rats were submitted to the von Frey and acetone tests to assess mechanical and cold allodynia after 21 days of chronic constriction injury (CCI) of the sciatic nerve or Sham-procedure ("false operated"). Electrical neurostimulation of the IFL/mPFC was performed by low-frequency stimuli (20 µA, 100 Hz) applied for 15 s by deep brain stimulation (DBS) device 21 days after CCI. Either cobalt chloride (CoCl2 at 1.0 mM/200 nL), NMDAr agonist (at 0.25, 1.0, and 2.0 nmol/200 nL) or physiological saline (200 nL) was administered into the IFL/mPFC. CoCl2 administration in the IFL cortex did not alter either mechanical or cold allodynia. DBS stimulation of the IFL cortex decreased mechanical allodynia in CCI rats. Chemical stimulation of the IFL cortex by an NMDA agonist (at 2.0 nmol) decreased mechanical allodynia. NMDA at any dose (0.25, 1.0, and 2.0 nmol) reduced the flicking/licking duration in the cold test. These findings suggest that the IFL/mPFC and the NMDAr of the neocortex are involved in attenuating chronic NP in rats.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hiperalgesia / Neuralgia Limite: Animals Idioma: En Revista: Exp Brain Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hiperalgesia / Neuralgia Limite: Animals Idioma: En Revista: Exp Brain Res Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Brasil