Your browser doesn't support javascript.
loading
Carbon dioxide foam bubbles enhance skin penetration through the stratum corneum layer with mechanical mechanism.
Berkey, Christopher A; Styke, Cassandra; Yoshitake, Hiroki; Sonoki, Yoshihiko; Uchiyama, Masayuki; Dauskardt, Reinhold H.
Afiliação
  • Berkey CA; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Styke C; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Yoshitake H; Skin Care Products Research, Kao Corporation, Tokyo, Japan.
  • Sonoki Y; Skin Care Products Research, Kao Corporation, Tokyo, Japan.
  • Uchiyama M; Skin Care Products Research, Kao Corporation, Tokyo, Japan.
  • Dauskardt RH; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. Electronic address: dauskardt@stanford.edu.
Colloids Surf B Biointerfaces ; 231: 113538, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37738871
ABSTRACT
Topical skin formulations often include penetration enhancers that interact with the outer stratum corneum (SC) layer to chemically enhance diffusion. Alternatively, penetration can be mechanically enhanced with simple rubbing in the presence of solid particles sometimes included to exfoliate the top layers of the SC. Our goal was to evaluate micron-sized carbon dioxide bubbles included in a foamed moisturizing formulation as a mechanical penetration enhancement strategy. We show that moisturizing foam bubbles cause an increase in SC formulation penetration using both mechanical and spectroscopic characterization. Our results suggest viscous liquid film drainage between coalescing gaseous bubbles creates local regions of increased hydrodynamic pressure in the foam liquid layer adjacent to the SC surface that enhances treatment penetration. An SC molecular diffusion model is used to rationalize the observed behavior. The findings indicate marked increased levels of treatment concentration in the SC at 2 h and that persists to 18 h after exposure, far exceeding non-foamed treatments. The study suggests an alternate strategy for increasing formulation penetration with a non-chemical mechanism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Absorção Cutânea / Dióxido de Carbono Tipo de estudo: Prognostic_studies Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Absorção Cutânea / Dióxido de Carbono Tipo de estudo: Prognostic_studies Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos