Your browser doesn't support javascript.
loading
Deep-Learning-Based High-Intensity Focused Ultrasound Lesion Segmentation in Multi-Wavelength Photoacoustic Imaging.
Wu, Xun; Sanders, Jean L; Dundar, M Murat; Oralkan, Ömer.
Afiliação
  • Wu X; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA.
  • Sanders JL; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA.
  • Dundar MM; Computer and Information Science Department, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
  • Oralkan Ö; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA.
Bioengineering (Basel) ; 10(9)2023 Sep 08.
Article em En | MEDLINE | ID: mdl-37760164
Photoacoustic (PA) imaging can be used to monitor high-intensity focused ultrasound (HIFU) therapies because ablation changes the optical absorption spectrum of the tissue, and this change can be detected with PA imaging. Multi-wavelength photoacoustic (MWPA) imaging makes this change easier to detect by repeating PA imaging at multiple optical wavelengths and sampling the optical absorption spectrum more thoroughly. Real-time pixel-wise classification in MWPA imaging can assist clinicians in monitoring HIFU lesion formation and will be a crucial milestone towards full HIFU therapy automation based on artificial intelligence. In this paper, we present a deep-learning-based approach to segment HIFU lesions in MWPA images. Ex vivo bovine tissue is ablated with HIFU and imaged via MWPA imaging. The acquired MWPA images are then used to train and test a convolutional neural network (CNN) for lesion segmentation. Traditional machine learning algorithms are also trained and tested to compare with the CNN, and the results show that the performance of the CNN significantly exceeds traditional machine learning algorithms. Feature selection is conducted to reduce the number of wavelengths to facilitate real-time implementation while retaining good segmentation performance. This study demonstrates the feasibility and high performance of the deep-learning-based lesion segmentation method in MWPA imaging to monitor HIFU lesion formation and the potential to implement this method in real time.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioengineering (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Bioengineering (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos