Your browser doesn't support javascript.
loading
Predicting the Temperature-Dependent Long-Term Creep Mechanical Response of Silica Sand-Textured Geomembrane Interfaces Based on Physical Tests and Machine Learning Techniques.
Chao, Zhiming; Wang, Haoyu; Hu, Hanwen; Ding, Tianchen; Zhang, Ye.
Afiliação
  • Chao Z; Shanghai Estuarine and Coastal Science Research Center, Shanghai 201201, China.
  • Wang H; Institute of Water Sciences and Technology, Hohai University, Nanjing 211106, China.
  • Hu H; College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 200135, China.
  • Ding T; College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 200135, China.
  • Zhang Y; Mentverse Ltd., 25 Cabot Square, Canary Wharf, London E14 4QZ, UK.
Materials (Basel) ; 16(18)2023 Sep 10.
Article em En | MEDLINE | ID: mdl-37763422
Preciously assessing the creep mechanical response of sand-geomembrane interfaces is vital for the design of relevant engineering applications, which is inevitable to be influenced by temperature and stress statuses. In this paper, based on the self-developed temperature-controlled large interface shear apparatus, a series of long-term creep shear tests on textured geomembrane-silica sand interfaces in different temperatures, normal pressure, and creep shear pressure were conducted, and a database compiled from the physical creep shear test results is constructed. By adopting the database, three disparate machine learning algorithms of the Back Propagation Artificial Neural Network (BPANN), the Support Vector Machine (SVM) and the Extreme Learning Machine (ELM) were adopted to assess the long-term creep mechanical properties of sand-geomembrane interfaces while also considering the influence of temperature. Then, the forecasting results of the different algorithms was compared and analyzed. Furthermore, by using the optimal machine learning model, sensitivity analysis was carried out. The research indicated that the BPANN model has the best forecasting performance according to the statistics criteria of the Root-Mean-Square Error, the Correlation Coefficient, Wilmot's Index of Agreement, and the Mean Absolute Percentage Error among the developed models. Temperature is the most important influence factor on the creep interface mechanical properties, followed with time. The research findings can support the operating safety of the related engineering facilities installed with the geomembrane.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Materials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Materials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China