Your browser doesn't support javascript.
loading
Allosteric inhibition of the T cell receptor by a designed membrane ligand.
Ye, Yujie; Morita, Shumpei; Chang, Justin J; Buckley, Patrick M; Wilhelm, Kiera B; DiMaio, Daniel; Groves, Jay T; Barrera, Francisco N.
Afiliação
  • Ye Y; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, United States.
  • Morita S; Department of Chemistry, University of California, Berkeley, Berkeley, United States.
  • Chang JJ; Department of Genetics, Yale University, New Haven, United States.
  • Buckley PM; Department of Microbial Pathogenesis, Yale University, New Haven, United States.
  • Wilhelm KB; Department of Chemistry, University of California, Berkeley, Berkeley, United States.
  • DiMaio D; Department of Genetics, Yale University, New Haven, United States.
  • Groves JT; Department of Chemistry, University of California, Berkeley, Berkeley, United States.
  • Barrera FN; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.
Elife ; 122023 10 05.
Article em En | MEDLINE | ID: mdl-37796108
ABSTRACT
The T cell receptor (TCR) is a complex molecular machine that directs the activation of T cells, allowing the immune system to fight pathogens and cancer cells. Despite decades of investigation, the molecular mechanism of TCR activation is still controversial. One of the leading activation hypotheses is the allosteric model. This model posits that binding of pMHC at the extracellular domain triggers a dynamic change in the transmembrane (TM) domain of the TCR subunits, which leads to signaling at the cytoplasmic side. We sought to test this hypothesis by creating a TM ligand for TCR. Previously we described a method to create a soluble peptide capable of inserting into membranes and binding to the TM domain of the receptor tyrosine kinase EphA2 (Alves et al., eLife, 2018). Here, we show that the approach is generalizable to complex membrane receptors, by designing a TM ligand for TCR. We observed that the designed peptide caused a reduction of Lck phosphorylation of TCR at the CD3ζ subunit in T cells. As a result, in the presence of this peptide inhibitor of TCR (PITCR), the proximal signaling cascade downstream of TCR activation was significantly dampened. Co-localization and co-immunoprecipitation in diisobutylene maleic acid (DIBMA) native nanodiscs confirmed that PITCR was able to bind to the TCR. AlphaFold-Multimer predicted that PITCR binds to the TM region of TCR, where it interacts with the two CD3ζ subunits. Our results additionally indicate that PITCR disrupts the allosteric changes in the compactness of the TM bundle that occur upon TCR activation, lending support to the allosteric TCR activation model. The TCR inhibition achieved by PITCR might be useful to treat inflammatory and autoimmune diseases and to prevent organ transplant rejection, as in these conditions aberrant activation of TCR contributes to disease.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Antígenos de Linfócitos T / Linfócitos T Tipo de estudo: Prognostic_studies Idioma: En Revista: Elife Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores de Antígenos de Linfócitos T / Linfócitos T Tipo de estudo: Prognostic_studies Idioma: En Revista: Elife Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos