Your browser doesn't support javascript.
loading
Mechanical Power Density Predicts Prolonged Ventilation Following Double Lung Transplantation.
Ghiani, Alessandro; Kneidinger, Nikolaus; Neurohr, Claus; Frank, Sandra; Hinske, Ludwig Christian; Schneider, Christian; Michel, Sebastian; Irlbeck, Michael.
Afiliação
  • Ghiani A; Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart-Schillerhoehe Lung Clinic GmbH, Robert-Bosch-Hospital GmbH, Stuttgart, Germany.
  • Kneidinger N; Department of Medicine V, LMU University Hospital, LMU Munich, Munich, Germany.
  • Neurohr C; Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Munich, Germany.
  • Frank S; Department of Pulmonology and Respiratory Medicine, Lung Center Stuttgart-Schillerhoehe Lung Clinic GmbH, Robert-Bosch-Hospital GmbH, Stuttgart, Germany.
  • Hinske LC; Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Munich, Germany.
  • Schneider C; Department of Anesthesiology, Ludwig-Maximilians-University (LMU) of Munich, Munich, Germany.
  • Michel S; Department of Anesthesiology, Ludwig-Maximilians-University (LMU) of Munich, Munich, Germany.
  • Irlbeck M; Institute for Digital Medicine, University Hospital Augsburg, Augsburg, Germany.
Transpl Int ; 36: 11506, 2023.
Article em En | MEDLINE | ID: mdl-37799668
ABSTRACT
Prolonged mechanical ventilation (PMV) after lung transplantation poses several risks, including higher tracheostomy rates and increased in-hospital mortality. Mechanical power (MP) of artificial ventilation unifies the ventilatory variables that determine gas exchange and may be related to allograft function following transplant, affecting ventilator weaning. We retrospectively analyzed consecutive double lung transplant recipients at a national transplant center, ventilated through endotracheal tubes upon ICU admission, excluding those receiving extracorporeal support. MP and derived indexes assessed up to 36 h after transplant were correlated with invasive ventilation duration using Spearman's coefficient, and we conducted receiver operating characteristic (ROC) curve analysis to evaluate the accuracy in predicting PMV (>72 h), expressed as area under the ROC curve (AUROC). PMV occurred in 82 (35%) out of 237 cases. MP was significantly correlated with invasive ventilation duration (Spearman's ρ = 0.252 [95% CI 0.129-0.369], p < 0.01), with power density (MP normalized to lung-thorax compliance) demonstrating the strongest correlation (ρ = 0.452 [0.345-0.548], p < 0.01) and enhancing PMV prediction (AUROC 0.78 [95% CI 0.72-0.83], p < 0.01) compared to MP (AUROC 0.66 [0.60-0.72], p < 0.01). Mechanical power density may help identify patients at risk for PMV after double lung transplantation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Respiração Artificial / Transplante de Pulmão Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Transpl Int Assunto da revista: TRANSPLANTE Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Respiração Artificial / Transplante de Pulmão Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Transpl Int Assunto da revista: TRANSPLANTE Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha