Your browser doesn't support javascript.
loading
MicroRNA-138: an emerging regulator of skeletal development, homeostasis, and disease.
Brito, Victor Gustavo Balera; Bell-Hensley, Austin; McAlinden, Audrey.
Afiliação
  • Brito VGB; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States.
  • Bell-Hensley A; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, United States.
  • McAlinden A; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States.
Am J Physiol Cell Physiol ; 325(6): C1387-C1400, 2023 12 01.
Article em En | MEDLINE | ID: mdl-37842749
ABSTRACT
Noncoding microRNAs are powerful epigenetic regulators of cellular processes by their ability to target and suppress expression of numerous protein-coding mRNAs. This multitargeting function is a unique and complex feature of microRNAs. It is now well-described that microRNAs play important roles in regulating the development and homeostasis of many cell/tissue types, including those that make up the skeletal system. In this review, we focus on microRNA-138 (miR-138) and its effects on regulating bone and cartilage cell differentiation and function. In addition to its reported role as a tumor suppressor, miR-138 appears to function as an inhibitor of osteoblast differentiation. This review provides additional information on studies that have attempted to alter miR-138 expression in vivo as a means to dampen ectopic calcification or alter bone mass. However, a review of the published literature on miR-138 in cartilage reveals a number of contradictory and inconclusive findings with respect to regulating chondrogenesis and chondrocyte catabolism. This highlights the need for more research in understanding the role of miR-138 in cartilage biology and disease. Interestingly, a number of studies in other systems have reported miR-138-mediated effects in dampening inflammation and pain responses. Future studies will reveal if a multifunctional role of miR-138 involving suppression of ectopic bone, inflammation, and pain will be beneficial in skeletal conditions such as osteoarthritis and heterotopic ossification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs Limite: Humans Idioma: En Revista: Am J Physiol Cell Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs Limite: Humans Idioma: En Revista: Am J Physiol Cell Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos