Your browser doesn't support javascript.
loading
Exploring Hydrophilic PD-L1 Radiotracers Utilizing Phosphonic Acids: Insights into Unforeseen Pharmacokinetics.
Krutzek, Fabian; Donat, Cornelius K; Stadlbauer, Sven.
Afiliação
  • Krutzek F; Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Medicinal Radiochemistry, Bautzner Landstraße 400, 01328 Dresden, Germany.
  • Donat CK; Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Medicinal Radiochemistry, Bautzner Landstraße 400, 01328 Dresden, Germany.
  • Stadlbauer S; Helmholtz Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Medicinal Radiochemistry, Bautzner Landstraße 400, 01328 Dresden, Germany.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article em En | MEDLINE | ID: mdl-37894769
ABSTRACT
Immune checkpoint inhibitor therapy targeting the PD-1/PD-L1 axis in cancer patients, is a promising oncological treatment. However, the number of non-responders remains high, causing a burden for the patient and the healthcare system. Consequently, a diagnostic tool to predict treatment outcomes would help with patient stratification. Molecular imaging provides said diagnostic tool by offering a whole-body quantitative assessment of PD-L1 expression, hence supporting therapy decisions. Four PD-L1 radioligand candidates containing a linker-chelator system for radiometalation, along with three hydrophilizing units-one sulfonic and two phosphonic acids-were synthesized. After labeling with 64Cu, log D7.4 values of less than -3.03 were determined and proteolytic stability confirmed over 94% intact compound after 48 h. Binding affinity was determined using two different assays, revealing high affinities up to 13 nM. µPET/CT imaging was performed in tumor-bearing mice to investigate PD-L1-specific tumor uptake and the pharmacokinetic profile of radioligands. These results yielded an unexpected in vivo distribution, such as low tumor uptake in PD-L1 positive tumors, high liver uptake, and accumulation in bone/bone marrow and potentially synovial spaces. These effects are likely caused by Ca2+-affinity and/or binding to macrophages. Despite phosphonic acids providing high water solubility, their incorporation must be carefully considered to avoid compromising the pharmacokinetic behavior of radioligands.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons / Neoplasias Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons / Neoplasias Limite: Animals / Humans Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha