Your browser doesn't support javascript.
loading
Complexation of histone deacetylase inhibitor belinostat to Cu(II) prevents premature metabolic inactivation in vitro and demonstrates potent anti-cancer activity in vitro and ex vivo in colon cancer.
Finnegan, Ellen; Ding, Wei; Ude, Ziga; Terer, Sara; McGivern, Tadhg; Blümel, Anna M; Kirwan, Grainne; Shao, Xinxin; Genua, Flavia; Yin, Xiaofei; Kel, Alexander; Fattah, Sarinj; Myer, Parvathi A; Cryan, Sally-Ann; Prehn, Jochen H M; O'Connor, Darran P; Brennan, Lorraine; Yochum, Gregory; Marmion, Celine J; Das, Sudipto.
Afiliação
  • Finnegan E; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Ding W; Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA, 17036, USA.
  • Ude Z; Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Terer S; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • McGivern T; Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Blümel AM; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Kirwan G; Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Shao X; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Genua F; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Yin X; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Kel A; UCD School of Agriculture and Food Science, UCD Conway Institute, Belfield, University College Dublin, Dublin, Ireland.
  • Fattah S; GeneXplain GmbH, Wolfenbuettel, Germany.
  • Myer PA; BIOSOFT.RU, LLC, Novosibirsk, Russia.
  • Cryan SA; Institute of Chemical Biology and Fundamental Medicine SBRAS, Novosibirsk, Russia.
  • Prehn JHM; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • O'Connor DP; Montefiore Medical Center, Albert Einstein Cancer Center, Bronx, NY, USA.
  • Brennan L; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Yochum G; Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Marmion CJ; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
  • Das S; UCD School of Agriculture and Food Science, UCD Conway Institute, Belfield, University College Dublin, Dublin, Ireland.
Cell Oncol (Dordr) ; 2023 Nov 07.
Article em En | MEDLINE | ID: mdl-37934338
ABSTRACT

PURPOSE:

The histone deacetylase inhibitor (HDACi), belinostat, has had limited therapeutic impact in solid tumors, such as colon cancer, due to its poor metabolic stability. Here we evaluated a novel belinostat prodrug, copper-bis-belinostat (Cubisbel), in vitro and ex vivo, designed to overcome the pharmacokinetic challenges of belinostat.

METHODS:

The in vitro metabolism of each HDACi was evaluated in human liver microsomes (HLMs) using mass spectrometry. Next, the effect of belinostat and Cubisbel on cell growth, HDAC activity, apoptosis and cell cycle was assessed in three colon cancer cell lines. Gene expression alterations induced by both HDACis were determined using RNA-Seq, followed by in silico analysis to identify master regulators (MRs) of differentially expressed genes (DEGs). The effect of both HDACis on the viability of colon cancer patient-derived tumor organoids (PDTOs) was also examined.

RESULTS:

Belinostat and Cubisbel significantly reduced colon cancer cell growth mediated through HDAC inhibition and apoptosis induction. Interestingly, the in vitro half-life of Cubisbel was significantly longer than belinostat. Belinostat and its Cu derivative commonly dysregulated numerous signalling and metabolic pathways while genes downregulated by Cubisbel were potentially controlled by VEGFA, ERBB2 and DUSP2 MRs. Treatment of colon cancer PDTOs with the HDACis resulted in a significant reduction in cell viability and downregulation of stem cell and proliferation markers.

CONCLUSIONS:

Complexation of belinostat to Cu(II) does not alter the HDAC activity of belinostat, but instead significantly enhances its metabolic stability in vitro and targets anti-cancer pathways by perturbing key MRs in colon cancer. Complexation of HDACis to a metal ion might improve the efficacy of clinically used HDACis in patients with colon cancer.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cell Oncol (Dordr) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Irlanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cell Oncol (Dordr) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Irlanda