Your browser doesn't support javascript.
loading
Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning.
Mok, Dong Hyeon; Li, Hong; Zhang, Guiru; Lee, Chaehyeon; Jiang, Kun; Back, Seoin.
Afiliação
  • Mok DH; Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
  • Li H; Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Zhang G; Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  • Lee C; Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.
  • Jiang K; Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. kunjiang@sjtu.edu.cn.
  • Back S; Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea. seoin0226@gmail.com.
Nat Commun ; 14(1): 7303, 2023 Nov 11.
Article em En | MEDLINE | ID: mdl-37952012
The electrochemical carbon dioxide reduction reaction (CO2RR) is an attractive approach for mitigating CO2 emissions and generating value-added products. Consequently, discovery of promising CO2RR catalysts has become a crucial task, and machine learning (ML) has been utilized to accelerate catalyst discovery. However, current ML approaches are limited to exploring narrow chemical spaces and provide only fragmentary catalytic activity, even though CO2RR produces various chemicals. Here, by merging pre-developed ML model and a CO2RR selectivity map, we establish high-throughput virtual screening strategy to suggest active and selective catalysts for CO2RR without being limited to a database. Further, this strategy can provide guidance on stoichiometry and morphology of the catalyst to researchers. We predict the activity and selectivity of 465 metallic catalysts toward four expected reaction products. During this process, we discover previously unreported and promising behavior of Cu-Ga and Cu-Pd alloys. These findings are then validated through experimental methods.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article