Cyano Decoration of π-Bridge to Boost Photoluminescence and Electroluminescence Quantum Yields of Triazine/Carbazole Based Blue TADF Emitter.
Chemistry
; 30(4): e202303169, 2024 Jan 16.
Article
em En
| MEDLINE
| ID: mdl-37965803
In general, a large donor-acceptor dihedral angle is required to guarantee sufficient frontier molecular orbitals separation for thermally activated delayed fluorescence (TADF) emitters, which is intrinsically unfavorable for the radiative transition. We present a molecular design method favoring both reverse intersystem crossing (RISC) and radiative transitions even at a moderate D-A angle. A blue TADF emitter TrzBuCz-CN was designed with triazine/tert-butylcarbazole as donor/acceptor and cyano (CN) incorporated on the phenylene bridge. In comparison with the methyl decoration in similar way (TrzBuCz-Me), CN decoration reduced the D-A dihedral angle from 70° to 60°, which is intrinsically not favorable for sufficient FMO separation, but unexpectedly reduced the singlet and triplet energy gap (ΔEST ) and thus facilitated TADF feature by pulling down the lowest singlet state energy. While the reduced distorsion instead improved the HOMO-LUMO overlap and boosted the fluorescence quantum yield from 41 % to 94 %. The blue organic light-emitting diode of TrzBuCz-CN exhibited an external quantum efficiency of 13.7 % with emission peak at 466â
nm, greatly superior to 6.0 % of TrzBuCz-Me. The result provides a feasible design strategy to facilitate both RISC and radiation processes by CN decoration of the linking bridge of TADF emitters.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chemistry
Assunto da revista:
QUIMICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China