Your browser doesn't support javascript.
loading
Investigation on the origin of hot electrons in laser plasma interaction at shock ignition intensities.
Cristoforetti, G; Baffigi, F; Batani, D; Dudzak, R; Fedosejevs, R; Filippov, E D; Gajdos, P; Juha, L; Khan, M; Koester, P; Krus, M; Mancelli, D; Martynenko, A S; Nicolai, Ph; Pikuz, S A; Renner, O; Tentori, A; Volpe, L; Woolsey, N; Zeraouli, G; Gizzi, L A.
Afiliação
  • Cristoforetti G; Istituto Nazionale di Ottica, CNR, Pisa, Italy. gabriele.cristoforetti@cnr.it.
  • Baffigi F; Istituto Nazionale di Ottica, CNR, Pisa, Italy.
  • Batani D; Université de Bordeaux, CNRS, CEA, CELIA, 33405, Talence, France.
  • Dudzak R; Institute of Plasma Physics of the CAS, Prague, Czech Republic.
  • Fedosejevs R; Institute of Physics of the CAS, Prague, Czech Republic.
  • Filippov ED; University of Alberta, Edmonton, Canada.
  • Gajdos P; JIHT RAS, Moscow, 125412, Russia.
  • Juha L; Institute of Plasma Physics of the CAS, Prague, Czech Republic.
  • Khan M; Institute of Physics of the CAS, Prague, Czech Republic.
  • Koester P; York Plasma Institute, School of Physics, Engineering and Technology, University of York, York, UK.
  • Krus M; Istituto Nazionale di Ottica, CNR, Pisa, Italy.
  • Mancelli D; Institute of Plasma Physics of the CAS, Prague, Czech Republic.
  • Martynenko AS; Institute of Plasma Physics and Lasers, Hellenic Mediterranean University Research Centre, Rethymnon, Greece.
  • Nicolai P; Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece.
  • Pikuz SA; JIHT RAS, Moscow, 125412, Russia.
  • Renner O; GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
  • Tentori A; Université de Bordeaux, CNRS, CEA, CELIA, 33405, Talence, France.
  • Volpe L; JIHT RAS, Moscow, 125412, Russia.
  • Woolsey N; NRNU MEPhI, Moscow, 115409, Russia.
  • Zeraouli G; Institute of Plasma Physics of the CAS, Prague, Czech Republic.
  • Gizzi LA; Institute of Physics of the CAS, Prague, Czech Republic.
Sci Rep ; 13(1): 20681, 2023 Nov 24.
Article em En | MEDLINE | ID: mdl-38001120
ABSTRACT
Shock Ignition is a two-step scheme to reach Inertial Confinement Fusion, where the precompressed fuel capsule is ignited by a strong shock driven by a laser pulse at an intensity in the order of [Formula see text] W/cm[Formula see text]. In this report we describe the results of an experiment carried out at PALS laser facility designed to investigate the origin of hot electrons in laser-plasma interaction at intensities and plasma temperatures expected for Shock Ignition. A detailed time- and spectrally-resolved characterization of Stimulated Raman Scattering and Two Plasmon Decay instabilities, as well as of the generated hot electrons, suggest that Stimulated Raman Scattering is the dominant source of hot electrons via the damping of daughter plasma waves. The temperature dependence of laser plasma instabilities was also investigated, enabled by the use of different ablator materials, suggesting that Two Plasmon Decay is damped at earlier times for higher plasma temperatures, accompanied by an earlier ignition of SRS. The identification of the predominant hot electron source and the effect of plasma temperature on laser plasma interaction, here investigated, are extremely useful for developing the mitigation strategies for reducing the impact of hot electrons on the fuel ignition.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Itália