Your browser doesn't support javascript.
loading
WRKY Transcriptional Factor IlWRKY70 from Iris laevigata Enhances Drought and Salinity Tolerances in Nicotiana tabacum.
Shi, Gongfa; Liu, Guiling; Liu, Huijun; Xu, Nuo; Yang, Qianqian; Song, Ziyi; Ye, Wangbin; Wang, Ling.
Afiliação
  • Shi G; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Liu G; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Liu H; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Xu N; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Yang Q; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Song Z; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Ye W; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
  • Wang L; College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article em En | MEDLINE | ID: mdl-38003365
Drought and high salinity greatly affect plant growth and development. WRKY transcription factors play a key role in plant tolerance to abiotic stress, but the functions of WRKYs in the ornamental monocotyledon Iris laevigata remain largely unexplored. In this study, we cloned IlWRKY70 and found that it is a Group III WRKY localized in the nucleus. The expression of IlWRKY70 was induced by NaCl and PEG-6000, which reached peaks (4.38 and 5.65 times) after 3 h and 1 h, respectively. The exogenous overexpression of IlWRKY70 in N. tabacum significantly improved the resistance under NaCl and drought treatments, as evidenced by higher germination rates, longer root lengths, and increased fresh weights compared to those of control plants. In addition, transgenic seedlings showed significantly reduced wilting, higher photosynthetic performance, higher Fv/Fm and chlorophyll content, and lower stomatal conductance. Moreover, transgenic lines showed higher antioxidant enzymatic activities, lower reactive oxygen species (ROS), and lower malondialdehyde contents. Accordingly, we also found higher expressions of antioxidant defense genes, including SOD, CAT, and POD, in transgenic lines compared to controls under salt and drought stresses. Thus, IlWRKY70 enhances the abilities of salt and drought tolerances in plants, at least partially, via ROS regulation and can be used for breeding I. laevigata possessing enhanced salt and drought resistances.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Gênero Iris Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Gênero Iris Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China