Your browser doesn't support javascript.
loading
HBP1 promotes chicken preadipocyte proliferation via directly repressing SOCS3 transcription.
Chen, Hongyan; Zhou, Sitong; Wang, Youdong; Zhang, Qi; Leng, Li; Cao, Zhiping; Luan, Peng; Li, Yumao; Wang, Shouzhi; Li, Hui; Cheng, Bohan.
Afiliação
  • Chen H; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Zhou S; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Wang Y; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Zhang Q; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Leng L; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Cao Z; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Luan P; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Li Y; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Wang S; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Li H; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
  • Cheng B; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, Heilongjiang, China; College of Animal Science a
Int J Biol Macromol ; 256(Pt 2): 128414, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38029903
ABSTRACT
Preadipocyte proliferation is an essential process in adipose development. During proliferation of preadipocytes, transcription factors play crucial roles. HMG-box protein 1 (HBP1) is an important transcription factor of cellular proliferation. However, the function and underlying mechanisms of HBP1 in the proliferation of preadipocytes remain unclear. Here, we found that the expression level of HBP1 decreased first and then increased during the proliferation of chicken preadipocytes. Knockout of HBP1 could inhibit the proliferation of preadipocytes, while overexpression of HBP1 could promote the proliferation of preadipocytes. ChIP-seq data showed that HBP1 had the unique DNA binding motif in chicken preadipocytes. By integrating ChIP-Seq and RNA-Seq, we revealed a total of 3 candidate target genes of HBP1. Furthermore, the results of ChIP-qPCR, RT-qPCR, luciferase reporter assay and EMSA showed that HBP1 could inhibit the transcription of suppressor of cytokine signaling 3 (SOCS3) by binding to its promoter. Moreover, we confirmed that SOCS3 can mediate the regulation of HBP1 on the proliferation of preadipocytes through RNAi and rescue experiments. Altogether, these data demonstrated that HBP1 directly targets SOCS3 to regulate chicken preadipocyte proliferation. Our findings expand the transcriptional regulatory network of preadipocyte proliferation, and they will be helpful in formulating a molecular breeding scheme to control excessive abdominal fat deposition and to improve meat quality in chickens.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Galinhas Limite: Animals Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Galinhas Limite: Animals Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article