Your browser doesn't support javascript.
loading
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination.
Terwilliger, Thomas C; Liebschner, Dorothee; Croll, Tristan I; Williams, Christopher J; McCoy, Airlie J; Poon, Billy K; Afonine, Pavel V; Oeffner, Robert D; Richardson, Jane S; Read, Randy J; Adams, Paul D.
Afiliação
  • Terwilliger TC; New Mexico Consortium, Los Alamos, NM, USA. tterwilliger@newmexicoconsortium.org.
  • Liebschner D; Los Alamos National Laboratory, Los Alamos, NM, USA. tterwilliger@newmexicoconsortium.org.
  • Croll TI; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Williams CJ; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
  • McCoy AJ; Department of Biochemistry, Duke University, Durham, NC, USA.
  • Poon BK; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
  • Afonine PV; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Oeffner RD; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Richardson JS; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
  • Read RJ; Department of Biochemistry, Duke University, Durham, NC, USA.
  • Adams PD; Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
Nat Methods ; 21(1): 110-116, 2024 Jan.
Article em En | MEDLINE | ID: mdl-38036854
Artificial intelligence-based protein structure prediction methods such as AlphaFold have revolutionized structural biology. The accuracies of these predictions vary, however, and they do not take into account ligands, covalent modifications or other environmental factors. Here, we evaluate how well AlphaFold predictions can be expected to describe the structure of a protein by comparing predictions directly with experimental crystallographic maps. In many cases, AlphaFold predictions matched experimental maps remarkably closely. In other cases, even very high-confidence predictions differed from experimental maps on a global scale through distortion and domain orientation, and on a local scale in backbone and side-chain conformation. We suggest considering AlphaFold predictions as exceptionally useful hypotheses. We further suggest that it is important to consider the confidence in prediction when interpreting AlphaFold predictions and to carry out experimental structure determination to verify structural details, particularly those that involve interactions not included in the prediction.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Processos Mentais Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Processos Mentais Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos