Injectable and Microporous Microgel-Fiber Granular Hydrogel Loaded with Bioglass and siRNA for Promoting Diabetic Wound Healing.
Small
; : e2309599, 2023 Dec 06.
Article
em En
| MEDLINE
| ID: mdl-38054634
Injectable hydrogels find extensive application in the treatment of diabetic wound healing. However, traditional bulk hydrogels are significantly limited due to their nano-porous structure, which obstructs cell migration and tissue infiltration. Moreover, regulating inflammation and matrix metalloproteinase -9 (MMP-9) expression in diabetic wounds is crucial for enhancing wound healing. This study marks the first instance of introducing an efficient, scalable, and simple method for producing microfiber-gel granules encapsulating bioceramics powders. Utilizing this method, an injectable microporous granular microgel-fiber hydrogel (MFgel) is successfully developed by assembling microgel-fibers made from hyaluronic acid (HA) and sodium alginate (SA) loaded with small interfering RNA (siRNA) and bioglass (BG) particles. Compared to traditional hydrogels (Tgel), MFgel possesses a highly interconnected network with micron-sized pores, demonstrating favorable properties for cell adhesion and penetration in in vitro experiments. Additionally, MFgel exhibits a higher compressive modulus and superior mechanical stability. When implanted subcutaneously in mice, MFgel promotes cellular and tissue infiltration, facilitating cell proliferation. Furthermore, when applied to skin defects in diabetic rats, MFgel not only effectively regulates inflammation and suppresses MMP-9 expression but also enhances angiogenesis and collagen deposition, thereby significantly accelerating diabetic wound healing. Taken together, this hydrogel possesses great potential in diabetic wound healing applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Small
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China